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Abstract

This paper focuses on a technique to model the
National Airspace System which does not require
selection of reference data and provides a frame-
work to discover the complicated effects of con-
gestion in one region of airspace on the operation
of another. Since the interactions at this level are
complex, only historical data are used in the anal-
ysis. From these data, a Bayesian Network model
of the system is learned that is capable of predict-
ing the number of aircraft in certain regions of
the airspace at a given time with greater accuracy
than similar linear regression models. The model
is also used to automatically determine which re-
gions of the system are the most critical to over-
all performance. The model is also used to auto-
matically rank the regions of the system based on
how important congestion in each region is to the
overall performance of the system.

1 Introduction

It is important to be able to model the National
Airspace System (NAS) and predict the effects
of congestion. An increase or decrease in an air-
port capacity, or a change in the number of flights
scheduled in a certain region, can affect the con-
gestion in the system as a whole. If the results of
these changes in the NAS can be predicted, steps
such as reconfiguring the airspace or implement-
ing traffic flow initiatives can be taken to amelio-
rate the adverse effects.

Many different modeling techniques have
been developed in the past for this purpose. Some

models are physically explicit trajectory-based
models, [1] and [2], which calculate the trajecto-
ries of each aircraft in the system. These models
can simulate congestion effects, but they require
significant computational time and are not guar-
anteed to represent the behavior of the system.
Other models are created from network-flow data
and combine physical equations and analysis of
historical data, [3], [4] and [5]. These models
often do not take capacity and demand into ac-
count explicitly, instead relying upon selection of
a reference day similar to the day being simu-
lated. Still other models are empirical and purely
data-driven, [6], [7], and [8]. These models are
mostly used to predict delay instead of aircraft
count, and some still rely on selection of an ap-
propriate reference day.

This paper presents a graphical probabilis-
tic model, known as a Bayesian Network, which
is derived from historical data and provides es-
timates of the number of aircraft in regions of
the NAS. Other researchers ([9] and [10]) used
Bayesian networks in airspace system modeling
to study detailed effects such as gate delay. Un-
like some other modeling approaches, this model
does not require the careful selection of a refer-
ence state. Capacity and demand are treated as
fully independent variables, and this allows for
more modeling flexibility to simulate congestion
situations that have not yet been experienced by
the system. The model also provides a frame-
work to automatically discover from the data the
effects of congestion in one region on the opera-
tion of the entire system.

This model and the data used to produce it
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are discussed in Sections 2 and 3. The two steps
required to learn the model from the data are dis-
cussed in Section 4. Results of the model show-
ing predictions for certain days and a comparison
of the model with similar linear regression mod-
els are presented in Section 5. Finally, conclu-
sions are presented in Section 6.

2 Model of a Center

The NAS is divided into 20 separate regions
known as Air Route Traffic Control Centers.
Here, they will be referred to as “centers.” The
purpose of the model described in this paper is
to predict the number of aircraft that will be in
each center at a given time. A brief introduction
to Bayesian Networks will first be presented, and
then a Bayesian Network model to predict the
number of aircraft in a center will be discussed.

2.1 Bayesian Networks

Bayesian networks are probabilistic graphical
models where a node in the graph represents a
variable (such as the number of aircraft or the ca-
pacity of the area) and an edge between nodes
represents an interaction between variables (like
the fact that the number of aircraft is dependent
on the capacity). Associated with each node
are parameters representing the probability of the
states of the node given the states of its parents.
The Bayesian network represents a joint proba-
bility distribution of all variables.

In general, there are two parts of a Bayesian
network which must either be determined from
the data or assigned: the structure of the graph
and, given a particular graph, some parametric
representation of the probability of the state of a
node given the states of the parent nodes. Advan-
tages of the methodology used to create Bayesian
Networks are that it allows for the graph structure
to be discovered automatically from the data, in-
stead of assigneda priori, and it allows for flexi-
bility to add other variables if desired.

2.2 Network Center Model

The number of aircraft in a center is a function
of the time histories of the arrival demand at air-
ports in the center, the departure demand at air-
ports in the center, the number of over-flights and
the airport capacities in the center. From this ba-
sic premise a simplified model of the center is
assumed by only taking into account the states
at the current time. In this simplified model, the
number of aircraft is given by the scheduled ar-
rivals, scheduled departures, and capacities of all
the airports in the center. Because of the different
operating states of the system, another important
factor to be included is the time of day. A graphi-
cal representation of the Bayesian Network asso-
ciated with this simplified model is shown in Fig-
ure 1, and this assumed model can be extended by
adding links to other centers.

Departures

Time

Center Count

Capacity

Arrivals

Fig. 1 Representation of the basic Bayesian net-
work used to model a center.

Once this model is learned, it will be capable
of predicting the number of aircraft in each cen-
ter at a certain time given the airports’ scheduled
arrivals and departures and the expected capaci-
ties for the airports. The methods used to learn
the model will be discussed in Section 4.

3 Data

The model requires historical data which de-
scribe four quantities in epochs of 15 minutes
for the entire NAS: the scheduled arrivals at an
airport, the scheduled departures at an airport,
the arrival and departure capacity of an airport,
and the observed number of aircraft in a center.
These data can be gathered from three different
sources. The airport schedule data for commer-
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cial aircraft can be found in the Bureau of Trans-
portation Statistics (BTS) Airline On-Time data.
This dataset provides the scheduled and actual ar-
rivals and departures for flights of the commercial
airlines which report their data to the BTS. The
airport capacity data are collected by the Fed-
eral Aviation Administration (FAA) for the top
75 airports in the country and made available
through the Aviation System Performance Met-
rics (ASPM) database. The number that is used
as the capacity for each airport is the sum of the
airport acceptance rate and the airport departure
rate found in that database. Finally, the number
of aircraft in the center is determined from the
Aviation Situation Display to Industry (ASDI)
dataset. The ASDI data are processed using Fu-
ture ATM Concepts Evaluation Tool (FACET),
[2], to count the number of aircraft in each center
every 15 minutes.

Since much of the data are collected at the air-
port level, these data must be aggregated by cen-
ter. Thus, the scheduled departures for all airports
in each center are summed to create a center-wide
number referred to as the scheduled center depar-
tures. This aggregation is also used to create the
scheduled center arrivals, and the capacities of all
airports in the center are summed to create the
center capacity.

All data were collected and processed for Jan-
uary 1, 2005 to June 30, 2007. Three separate
groups of data were then formed. Approximately
half of the data were grouped in one database
for model parameter learning. A quarter of the
data were grouped in a second database for model
scoring, and the remaining quarter of the data
were reserved for model evaluation and compari-
son.

4 Model Learning

The procedure used to create the model from the
data will now be discussed. An outline of the pro-
cedure discussed in the following sections is: (1)
a graph is assumed; (2) partitions to discretize the
data are assumed; (3) the data are divided into
groups based on the graph and which partitions
they lie in; (4) points are added to the data to

smooth the data and reduce noise; (5) a proba-
bility density function is fit to each group of data;
(6) the model is scored using reserved data; (7)
changes are made to the graph or the partition;
and (8) start at step three and iterate until satis-
fied with the results.

This procedure can be logically divided into
two parts. The first part of the process, known
as parameter search, is to learn the parameters of
each probability density function given a particu-
lar graph. This corresponds to steps three to six.
The second part of the process, known as struc-
ture search, is change the structure of the graph to
better capture the interactions in the system. This
corresponds to steps seven and eight.

The model of a single center shown in Figure
1 is simple in the sense that the number of air-
craft in a center is only a function of the variables
of that center. In the NAS, this is not the case.
The effects of a capacity constraint in one center
can propagate to other centers by various mecha-
nisms. To capture these effects graphically, links
from other centers to the current center can be in-
cluded (see Figure 2) using structure search.

Fig. 2 A complex Bayesian Network which in-
cludes dependencies between centers.

The specific form of structure search used
in this paper is described in Section 4.2 and is
important for improving the predictions of the
model. It can also allow for relative ranking of
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links. For instance, this ranking can be used to
determine whether a reduction of the capacity of
New York Center (ZNY) has a larger effect on the
results of Boston Center (ZBW) than a reduction
of capacity of Minneapolis Center (ZMP).

4.1 Parameter Search

The steps necessary to learn the probability re-
lationships between the variables for any given
graph such as the one shown in Figure 1 will now
be discussed. The first step is to discretize the
data by grouping them into bins. In subsequent
steps, the bin boundaries will be determined from
the data, but the initial boundaries can be picked
arbitrarily. For example, as shown in Figure 3,
the capacity of the center can be divided into
three separate bins. Capacity values below 62 are
grouped together in the first bin. Capacity val-
ues between 62 and 76 are grouped together into
the second bin, and capacity values above 76 are
grouped in the third bin. Bins for the scheduled
arrivals, the scheduled departures, and the time
of day are also created. The number of partitions
and the location of these partitions are important
parameters in the model. How these variables are
refined will be discussed later.
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Fig. 3 The distribution of capacities for New
York Center and an example of bin partitions.

Another important step in the process of
learning the model is to determine a distribu-
tion that gives a prior probability for the data.
This prior probability density function is an as-

sumption of what the probability of the center
count will be, and it is used for Bayesian learn-
ing of the parameters, which smoothes the data
and minimizes noise. To gain insight into a rea-
sonable form of this prior, the total distribution
of center counts for all data points aggregated
across all bins and all times is plotted in Figure
4. This distribution is bimodal. The two peaks
correspond roughly to nighttime operations and
daytime operations. To create a reasonable prior
for the data, these two states must be differenti-
ated between. This is accomplished by using the
scheduled arrivals, because the number of sched-
uled arrivals during nighttime operations is usu-
ally much lower than daytime operations. The
distribution for low scheduled arrivals is shown
in Figure 5(a) and the distribution for high sched-
uled arrivals is shown in Figure 5(b). For the
nighttime prior, a log-normal probability distri-
bution is fit to the data, and for the daytime prior
a Gaussian distribution is fit. Since these prior
distributions are only used to condition the data,
it is not necessary that they fit the data perfectly.
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Fig. 4 The distribution of center counts for all
data points in the parameter learning dataset for
New York Center.

With the data partitions and priors in place, a
probability density function (pdf) for the number
of aircraft in the center for each possible combi-
nation of bins is learned. For example, imagine
that there are 2 bins (high and low) for each of the
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Fig. 5 The New York Center counts and fitted distributions for (a) low arrival demand and (b) high
arrival demand.

four input variables. Then a pdf for each combi-
nation of bins must be learned, for a total of 16.
Each pdf is known as a conditional probability
distribution, since it is dependent on the states of
the input data.

For a specific combination of bins, all of the
data points in the parameter learning database as-
sociated with those bins are selected. To incorpo-
rate the data from the prior distributions, points
sampled from the appropriate prior are added to
the data. Figure 6 shows an example of a pdf
learned from a specific combination of bins in the
actual data with the points sampled from the prior
included. The pdf function fit is a mixture of a
log-normal distribution and a Gaussian distribu-
tion:

X = αN(µ1,σ2
1)+(1−α)Log−N(µ2,σ2

2). (1)

In this equationN(µ1,σ1) is a Gaussian distri-
bution with meanµ1 and standard deviationσ1,
andLog−N(µ2,σ2

2) is a log-normal distribution
whereµ2 andσ2 are the mean and the standard
deviation of the logarithm of the points in the dis-
tribution. Also, the parameterα provides a rela-
tive weight between the Gaussian and log-normal
portions of the mixture. The five parameters of
the mixture,σ1, µ1, σ2, µ2, andα, are determined
by maximizing the likelihood of the data given
the mixture parameters.

It is important to note that it was determined
that the center count is not distributed in a Gaus-
sian fashion. This is especially true when the
demand on the system is low and thus the total
number of aircraft in the system is low, but this
effect can be seen even when the center count
is higher. The effect of the mixture in the pdf
is illustrated by the peaked and asymmetrical na-
ture of the curve in Figure 6. Similarly, the log-
normal nature of the data at low demand is shown
in Figure 5(a).
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Fig. 6 An example of the distribution learned for
New York Center for evening with medium ca-
pacity and high arrival and departure demand.
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Once the pdf for each combination of bins is
learned, the model can be scored using the data
from the model scoring database. The score is
the log likelihood of the data in the model scoring
database given the Bayesian network learned in
the parameter learning step. This is given by the
equation

LL =
n

∑
i=1

lnP(xi .c|xi .i,M ) , (2)

wherexi is a point in the scoring database which
center countxi .c and other input dataxi .i. Also,
M represents the current Bayesian Network, and
n is the number of points in the scoring database.
The parameters of the model, such as the loca-
tion of a bin partition or the number of partitions,
can be varied and the resulting log-likelihood in-
dicates whether the change is good or bad for the
model.

In practice, learning the locations of the par-
titions is accomplished by optimizing each par-
tition type independently from the other parti-
tions. So, to determine the number and locations
of the time partitions, the partitions of all other
variables are held fixed. The time partitions are
then varied and scored using the structure learn-
ing dataset. The partition with the best score is
then selected for the model. Using this optimiza-
tion, most centers have three time bins, five ar-
rival and departure bins, and three capacity bins.
A more complete optimization obtained by vary-
ing the partitions of each variable together may
result in a better model.

4.2 Structure Search

The second part of the learning process is known
as structure search, and it involves determining
which nodes in the graph should be connected.
In this paper, the structure search will be used to
determine from the data where congestion has the
most effect on the operation of the NAS. For this
purpose, the basic graph for Center B, shown in
Figure 1, is used as a starting point and a link
to one node of another center model is added
to create a graph such as the one shown in Fig-
ure 7. The parameters of the graph are then

learned using the parameter learning dataset and
the procedure described in the previous section.
This graph is then scored using the model scoring
dataset, and this score can be compared against
the original score to determine whether the link
was beneficial to the model. If the link improves
the score, there is a statistical relationship be-
tween the newly connected nodes.

A B

Fig. 7 Including a single link from an input of
Center A to the output of Center B.

This method is useful because it not only de-
termines the best links for the graph, but it can
also provide a relative ranking between the links.
As discussed in Section 5.3, by ranking the rela-
tive importance of a link between one center and
each other center in the system the model can be
used to predict where in the system that capac-
ity reductions or demand increases have the most
effect on the rest of the system.

5 Results

After learning the model, there are many differ-
ent ways to interpret the output. The model can
be run on large sets of data for evaluation. The
model can also be used to predict what will hap-
pen for given inputs at a center level or system
wide. The results of changes in demand pro-
files or capacity reductions can also be predicted.
Also, the model can be used to rank the relevance
of centers.

5.1 Center and System Wide Predictions

The prediction capabilities of the model at the
system and center level will be discussed first.
The Bayesian network model used for these re-
sults is the base model shown in Figure 1. The
quality of the results can be analyzed using mul-
tiple metrics such as the root mean squared error
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of the predicted flight count or the probability of
the test data given the model. These metrics will
be compared against two linear regression mod-
els.

The model can be used to predict two differ-
ent aspects of the number of aircraft in the center
for any given input state. First, it can predict the
number of aircraft in the center, and second, it
can predict the probability of a certain number of
aircraft in a center. The count prediction is per-
formed by taking the expected value of the pdf
associated with the input bins that the data point
lies in. Since the pdfs that were fit to the data
are mixtures of log-normal and Gaussian distri-
butions as given in Equation 1, the expected value
is

xexp= αµ1+(1−α)e(µ2+σ2
2/2) (3)

whereα, µ1, µ2, andσ2 are the parameters of the
mixture for that bin.

Once the estimate for each point in the eval-
uation set is created, the data can be plotted on
a chart showing the predicted value versus the
actual value. These plots can be created for all
points in the evaluation dataset for each center
or for all centers together. If the predictions were
perfect, all data would lie on a line with unit slope
and zero y-intercept. Figure 8 shows the results
for all centers combined. As seen in the figure,
the data are somewhat tightly distributed about
the line which indicates that the model provides
a good estimate for the actual system. A mea-
sure of the variation of the data from the line is
the root mean squared (RMS) error. The data in
Figure 8 has a RMS error of 37. This error was
better than the RMS error for the linear regres-
sion models discussed subsequently and given in
Equations 4 and 5. For all of the evaluation data
the average flight count is 160 aircraft. So, the
RMS error divided by the average flight counts is
approximately 23%.

Figure 9 shows the RMS error for each center
divided by the average number of aircraft in that
center. The prediction errors are fairly consistent
around 23% with the maximum error being 29%
for Boston Center (ZBW) and the minimum error
being 16% for Los Angeles Center (ZLA).
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Fig. 8 The actual values compared with the pre-
dicted values for all of the evaluation data.
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by the average flight count for each center.
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To determine how well the method works, it
is compared to two linear regression models. Lin-
ear regression is also a Bayesian network, but
in the model the center count is assumed to be
a Gaussian distribution with a continuous linear
dependence on the input parameters. The two
linear regression models used as benchmarks are
one using only first order dependence on the four
input parameters:

cc= γ1na+ γ2nd + γ3nc + γ4t + γ5, (4)

and one with dependence on the input parameters
up to the fourth order:

cc=
4

∑
i=1

(

γ1in
i
a+ γ2in

i
d + γ3in

i
c + γ4it

i)+ γ5, (5)

wherecc is the center count,na is the number of
arrivals,nd is the number of departures,nc is the
capacity,t is the time of day (in coordinated uni-
versal time), and theγ constants are determined
by performing regression on the data in the pa-
rameter learning database. The model including
up to 4th order terms is the most accurate linear
regression model found.

The comparison of the models is accom-
plished by comparing the log of the probability
of the evaluation data given the model which is
given in Equation 2, where in this case the data
are from the evaluation database and the models
can be either Bayesian Networks or linear regres-
sion models. Basically this metric says how well
the model fits the evaluation data, with the ideal
model having a probability of one giving a log-
likelihood of zero.

Using the log-likelihood of the Bayesian
model as a baseline, the percent increase of the
Bayesian model over the other two models is
computed using the formula:

%increase=
LLreg−LLBayes

LLreg
. (6)

Figure 10(a) shows the average over all centers
of the percent increase in log-likelihood of the
Bayesian model over the log-likelihood of the
two regression models. The Bayesian model has

approximately a 9% increase in log-likelihood
over the 1st order linear regression model and
it has approximately a 4% increase over the best
linear regression model which included up to 4th
order dependence on the input variables. Figure
10(b) shows this same comparison at the center
level.
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Fig. 10 A comparison of the percent increase of
the log-likelihood of the data given the Bayesian
model with two linear regression models for: (a)
the average log-likelihood increases for all cen-
ters and (b) for each center.

5.2 Daily Predictions

In addition to looking at the results in aggregate
it is illustrative to look at a prediction for a con-
tinuous period of time. Figure 11 shows a com-
parison of system-wide traffic counts for two 24-
hour time periods and the predictions for those
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periods. The solid lines show a Tuesday in the
NAS, with the red line showing the actual flight
count and the blue line showing the prediction.
The dashed lines correspond to a Sunday. The
variations in the predictions for the two differ-
ent days show that the model is responding to the
changes in demand between the two days.
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Fig. 11 System-Wide Prediction for a weekday
(6/19/07) and a Sunday (6/17/07).

Figure 12(a) shows predictions for two days
in New York Center. The solid lines show a bad
weather day, and the dashed lines show a good
weather day a week later. The prediction for
the bad weather day is different than the good
weather day. This shows that the model is re-
sponding to capacity restrictions. However, the
prediction is not as low as the actual count. This
is because the day is an outlier, so it would be
difficult for a statistical model to capture the total
effect.

As discussed earlier, another output of the
model is the probability of any center count oc-
curring given a particular input. This probabil-
ity can be used to determine a confidence in the
expected value prediction, which is similar to the
probabilities of a weather forecast occurring. The
confidence,con, is given by

con= P(xi,exp|xi .i,M ), (7)

wherexi,exp is the expected value,xi .i is the in-
put data, andM is the model. Figure 12(b)

shows that the confidence in the bad weather day
prediction is lower than the confidence in the
good weather day prediction. Thus, even though
the prediction is not as accurate as for the good
weather day, the model will indicate that as well.
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Fig. 12 (a) A comparison of the predicted and
actual flight counts for a bad weather day and a
good weather day in New York Center. (b) The
confidence in the prediction for each day.

5.3 Relevance of Links

The previous results dealt with the basic center
model shown in Figure 1. Next, structure search
will be used to uncover the dependencies in the
system. To determine the relevance of inputs of
one center on the results of another, the model
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for a graph like the one shown in Figure 7 where
Center B is held fixed is learned. If adding this
link to the graph improves the score for predic-
tions in Center B, then that node of Center A
affects the results of Center B. Then all other
centers, shown as Center A, are iterated through
and the resulting model is scored. After iterating
through all centers they can be ranked by how
much they improved the model for center B.

The first link analyzed connects the demand
node of Center A to the center count of Cen-
ter B. Demand is defined to be the sum of the
scheduled arrivals and the scheduled departures.
Every center in the NAS is iterated through as
Center A and as Center B, and the score for each
graph is recorded. Then, for each center the im-
portance of the demand in every other center can
be ranked using these scores with the caveat that,
if a link from Center A does not improve the
score of Center B, then it is assigned a ranking
of 20. These rankings can then be summed for
the demand of all centers. For example, if New
York Center (ZNY) is ranked 4th for every center
and each of those links improves the score of the
other center, then the aggregate ranking of ZNY
will be 80. If ZNY was ranked 4th in every cen-
ter, but it only improved the score for 10 of them,
then it’s aggregate ranking would be 240.

In Figure 13 the result of performing this
model learning and ranking for the demand of all
20 centers in the continental United States and
summing each center’s rank is shown. These
scores are then normalized by subtracting the
ranking of the lowest ranked center. Using this
methodology, centers with lower ranking can be
considered to more important to the system with
respect to their demand. Interestingly, from the
rankings in Figure 13 centers such as Fort Worth
Center (ZFW) and New York Center (ZNY) with
busy airports such as DFW airport in Dallas and
New York’s JFK airport rank as important, while
centers that are generally considered less con-
nected such as Seattle Center (ZSE) or Miami
Center (ZMA) are ranked as less important.

The process outlined above for ranking de-
mand links is repeated for ranking capacity links.
The results of this analysis are shown in Figure
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Fig. 13 The normalized sum of the rankings for
demand.

14. Again, lower ranked centers are considered to
be more relevant to the system. The centers that
are generally considered to be more important to
the system such as ZNY, Chicago Center (ZAU),
and Atlanta (ZTL) are again ranked as important
by the model. Thus the model is capable of learn-
ing from the data which centers are critical to the
operation of the NAS.
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Fig. 14 The normalized sum of the rankings for
capacity.

6 Conclusions

In this paper, a Bayesian network model was
automatically created from historical data. The
model is capable of predicting the number of air-
craft in a center with a total RMS error of 37 air-
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craft using only scheduled airport demand, air-
port capacities, and the time of day.

The model performed better than linear re-
gression models using the same inputs. It also
was shown to be responsive to demand fluctu-
ations and capacity reductions. So, using the
model it is possible to predict what the future
number of aircraft will be and to know the rel-
ative confidence in that prediction. This model is
coarse in that large amounts of data are grouped
into large spatial regions, but it shows promise
for the method. A model with more detail, such
as one using the same techniques but modeling
the data at the sector level, might provide more
actionable results.

Finally, the model was used to automatically
discover from the data a ranking of the impor-
tance of the demand and the capacity of the cen-
ters in the NAS. This ranking roughly corre-
sponds to the generally accepted importance of
centers in that ZNY, ZAU and ZTL appear near
the top of the rankings.
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